Probabilistic electric load forecasting through Bayesian Mixture Density Networks
نویسندگان
چکیده
This work presents a novel approach to address challenging and still unsolved problem of neural network based load forecasting systems, that despite the significant results reached in terms prediction error reduction, lack suitable indications regarding sample-wise trustworthiness their predictions. The present is framed on Bayesian Mixture Density Networks, enhancing mapping capabilities networks by integrated predictive distributions, encompassing both aleatoric epistemic uncertainty sources. An end-to-end training method developed, aimed discover latent functional relation conditioning variables, characterize inherent stochasticity, convey parameters unique framework. To achieve reliable computationally scalable estimators, Mean Field variational inference deep ensembles are integrated. Experiments have been performed short-term tasks at regional fine-grained household scale, investigate heterogeneous operating conditions. Different architectural configurations compared, showing Continuous Ranked Probability Score tests performance improvements achieved integrating flexible patterns multi-modalities posterior space.
منابع مشابه
Neural Networks in Electric Load Forecasting: A Comprehensive Survey
Review and classification of electric load forecasting (LF) techniques based on artificial neural networks (ANN) is presented. A basic ANNs architectures used in LF reviewed. A wide range of ANN oriented applications for forecasting are given in the literature. These are classified into five groups: (1) ANNs in short-term LF, (2) ANNs in mid-term LF, (3) ANNs in long-term LF, (4) Hybrid ANNs in...
متن کاملMedium Term Electric Load Forecasting Using TLFN Neural Networks
This paper develops medium term electric load forecasting using neural networks, based on historical series of electric load, economic and demographic variables. The neural network chosen for this work is the Time Lagged Feedforward Network (TLFN), which combines conventional network topology (multilayer perceptron) with good handling of time dependencies by means of gamma memory. This is a ver...
متن کاملFuzzy Load Forecasting of Electric Power System
In order to efficiently improve the prediction accuracy, two load forecasting model based on fuzzy theory are presented, which are fuzzy clustering model and improved fuzzy regression analysis model .The method of fuzzy clustering is used to divide the area by the similar feature of load increasing. The new division is promising to improve the result of evident degree of clustering index to pow...
متن کاملWind Power and Electric Load Forecasting
As renewable energy increasingly integrates into the electric power system, electric load forecasting and renewable energy power generation forecasting become more important. In this project, ARIMA and NARX are applied to build load forecasting model focusing on improving statistical and computational efficiency without losing accuracy. ARIMA turns out to be better for short term forecasting wh...
متن کاملEnsembling Approaches to Hierarchical Electric Load Forecasting
Short term electrical load forecasting is critical in ensuring reliability and operational efficiency for electrical systems. With an influx of monitoring data and the growing technical complexity of the grid, there is a great interest and need for accurate forecasting in electricity planning. Our project uses a curated electric load dataset from Kaggle and evaluates the performance of several ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Energy
سال: 2022
ISSN: ['0306-2619', '1872-9118']
DOI: https://doi.org/10.1016/j.apenergy.2021.118341